Through and Through...

Change your life for the better from Aqua Cleaner, Air Cleaner, Activated Carbon.

HEAD QUARTER B-1307, 168, Gasan digital 1-ro, Geumcheon-gu, **URIMLIONSVALLY B-1307** Tel. +82-2-2026-2223 Fax. +82-2-2026-2225 http://www.3acltd.com

3AC(THAILAND) CO.,LTD 41/15 Mu8, Bueng Sub-district, Sriracha District, Chonburi Province, 20230 Thailand Tel. +66-38-199-866 Fax. +66-38-199-867

SUZHOU 3AC CO.,LTD Floor 3, Building No.4 Industrial Defense, No.333 Xingpu Road Suzhou Industrial Park, Jiangsu, 215126, China Tel. +86-512-6724-8130

Through and Through... Change your life for the better from Aqua Cleaner, Air Cleaner, Activated Carbon.

Activated Carbon

Our impregnated activated carbon is made by adding metal, metallic salt, or organic matter to activated carbon with high specific surface area and high purity to enhance chemical activity. In addition, our impregnated activated carbon can selectively remove TARGET GAS through the neutralization reaction, chemical reaction, and catalytic reaction.

Air Cleaner

We manufacture pre-filters that remove large particles, medium filters for specific functionality, deodorizing filters that remove various gases, and HEPA filters that remove ultrafine dust.

Aqua Cleaner

Our water filter is made by extrusion to filter out chlorine, particulate matter and heavy metals contained in water. We use verified raw materials that is not harmful to any kinds.

Partners

SAMSUNG COWQY

SK magic

Amway

'TORAY'

Be Original.

History

2007	- Established 3AC Corporation
2008	- Samsung Electronics China subsidiary export
2009	- COWAY filter delivery
2011	- Established 3AC 1st factory (Hwaseong)
	- Established an affiliated research institute
2013	 Awarded the 1 Million Dollar Export Tower on the 50th Trade Day Established Thailand corporation THAILAND 3AC
2014	- Confirmed as a technology innovation company (INNO-BIZ)
2015	- Designated as an excellent environmental industry in Kore
	- Gyeonggi-do Promising Small and Medium Business Certification
2016	- Established Chinese corporation SUZHOU 3AC
	- Selected as a leading industrial convergence company
2017	- Established 3AC 2nd factory (Jeongeup)
	- Established 3AC THAILAND new factory in Thailand
2018	- Korea Win-Win Growth Company Best Partner Award
	- Signed a contract to supply filters to GE APPLIANCES in the US
2019	 Received the Prime Minister's Commendation for Venture Startup Promotion
2020	- Awarded the 5 Million Dollar Export Tower on the 56th Trade Day
	- AMWAY air purifier filter delivery
	- Samsung Electronics air purifier EMS contract
	(3AC Thailand corporation)
	- 3AC Co., Ltd. 1st factory (Pyeongtaek) Expansion and relocation
2021	- Signed EMS contract with Samsung Electronics
	- Thailand Corporation 3AC THAILAND factory expansion
	- Relocation of company-affiliated research center to Yong-in
2022	- Signed a contract with Samsung Electronics for refrigerator
	water filter parts
	- Awarded the 10 Million Dollar Export Tower on the 59th Trade Day

- 3AC 2nd Factory (Jeongeun) 3rd Factory Expansion

3AC CO., LTD.

Today, when the importance of eco-friendly industries is being emphasized due to industrial development and increased interest in the environment, environmental control technology has a great impact on all areas, including air environment, water quality environment, and waste.

We strive to develop technologies and products that pursue clean air, clean water, and a pleasant environment by reflecting consumer needs.

1. Head Office

B-1307,168, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08507, Republic of Korea

- 2. Pyeongtaek Factory 19, Sari-gil, Seotan-myeon, Pyeongtaek-si, Gyeonggi-do, 17704, Republic of Korea 3. Jeongup Factory
- 131, Cheomdan-ro, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- 4. 3AC COMPANY-AFFILIATED RESEARCH CENTER 13, Hagal-ro 136beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, 17096, Republic of Korea
- 5. 3AC(THAILAND) CO.,LTD 41/15 Mu8, Bueng Sub-district, Sriracha District, Chonburi Province, 20230
- 6. SUZHOU 3AC CO.,LTD Modern Industrial Park, 333# Xingpu Road, Suzhou Jiangsu China

3AC Research & Development Center

The 3AC R&D Center was established in 2011 with the goal of realizing clean water, clean air and a pleasant environment. We are making efforts to improve indoor air quality by researching new adsorbents and developing filtration materials.

In addition, we have established an industry-academic cooperation system with many universities and research institutes in Korea to jointly research new technologies for the future.

Standard Test Facilities

Classification	Equipment	Measurement	Note	Country
	JEM 1467	Deodorization	1 m ³	Japan
	SPS-KACA 002-132	Particulate CADR, Harmful gas removal efficiency	1, 8, 30 m ³	Korea
	GB/T 18001-2015	Particulate CADR, Gas CADR & CCM	3, 30 m³	China
Standard Method	ASHERE 52.2-2017	Pressure loss of PSE, Merv	Wind Tunnel	USA
(Air)	DIN EN1822-5_2009	HEPA filter dust collection efficiency	Wind Tunnel	EU
	KS C 9325 / KS B 6311	Filter pressure loss, Flow rate	Wind Tunnel	Korea
	Enzyme-linked immunospecific assay	Removal rate of Antigen	-	-
	NSF Standard 42	Chlorine, particle removal rate	-	USA
Standard Method (Water)	Drinking water management (Performance Test)	Chlorine, amount of water purification, chromaticity, turbidity, iron, hardness	-	Korea

Classification	Equipment	Measurement
	FT-IR for gas	Formaldehyde, ammonia, acetic acid, toluene, etc.
	Formaldehyde Meter	Formaldehyde
	Formaldehyde Analyzer	Formaldehyde
	Nox Analyzer	NO2 , NO
	SOx Analyzer	SO2
Measuring Equipment (Air Solution)	TVOC	TOVC
	GC/PDD, GC/FID	Trimethylamine, methyl mercaptan
	O₃ Analyzer	Ozone
	Particle Meter	Particle
	BE	Specific surface area
	Microspectro-photometer	Absorbance
	Water particle Counter	Particle
	Hardness Meter	Water quality hardness
Measuring Equipment	Water colorimetric meter	Water quality chromaticity
(Water Solution)	Turbidity and chlorine meter	Water quality turbidity and chlorine
	Iron meter	Water quality iron concentration measurement
	Multi-purpose water quality meter	pH, TDS, Temperature

Establishment of Research and Development Network

Establishment of joint development agreements and industry-academic cooperation systems with Yonsei University, Sungkyunkwan University, Inha University, Ajou University, and Pohang University of Science and Technology for new material development and technological innovation.

Establishment of an industry-research cooperation system with Korea Institute of Industrial Technology, Korea Construction & Living Environment Testing Research Institute, Korea Apparel Testing & Research Institute, Gyeonggi TP, Gyeongbuk TP, etc., which have leading technologies for product development for the future, establishment of product reliability, and sharing of research results.

Patent

- Korea Patent Registration : 55
- (including Design : 9, Trademark : 3)
- Trademark Registration : 3
- Foreign Patent Registration (including PCT) : 4

Drying Machine

-

-

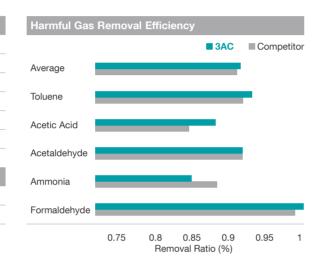
The drying machine filter removes foreign substances and fine dust attached to clothes during washing and drying.

Water Purifier

The water purifier filter removes chlorine, foreign substances, and heavy metals to provide reliable and drinkable water.

Refrigerator

Refrigerator filters use functional catalysts to maintain excellent odor removal efficiency even at low temperatures.

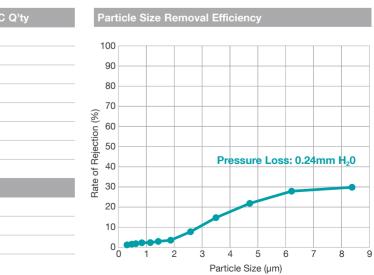

DEODORIZING FILTER

Deodorizing filter removes odors and harmful gases (formaldehyde, ammonia, toluene, etc.) using high-performance activated carbon developed by our technology. Deodorizing filter includes filters for air conditioners and air purifiers that purify indoor air, and refrigerator filters that can remove odors even at low temperatures.

Hazardous Gas Removal Efficiency	3AC	Competitor	Charges
Formaldehyde	99%	98%	355ml
Ammonia	86%	89%	355ml
Acetaldehyde	92%	92%	355ml
Acetic Acid	89%	86%	355ml
Toluene	93 %	92%	355ml
Average	91.8%	91.4%	355ml

Experimental Method 8 Rube Chambers (According to SPS-KACA002-132)

Samsung Virus Doctor


Product Line & Equipment

No.	M/C Name	Spec (Ton)	M/C
1	Injection	130	1
2	Injection	170	3
3	Injection	250	1
4	Injection	350	2
5	Injection	380	4
6	Injection	580	1
7	Injection	680	1

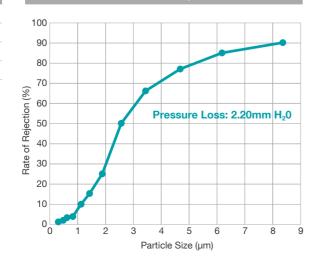
No.	
Test Chember	ASHRAE 52.2
Analyzer	OPC-HCT
Set	3AC Micro Fiber Pre-filter

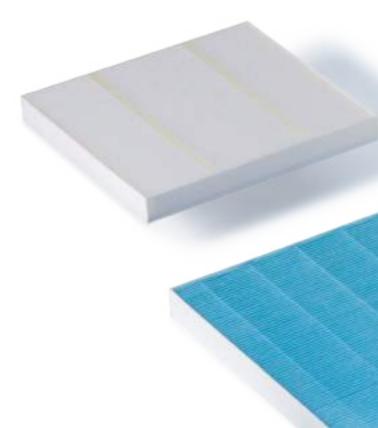
PRE-FILTER

The pre-filter is a pre-processing dust collection filter widely used in air conditioners, air purifiers, and industrial air conditioning facilities. Microfiber, which is manufactured by fusing the intersection of yarns about 1/3 the thickness of hair, has low pressure loss and excellent durability, so it can effectively remove dust as well as yellow dust (over 300µm).

Test Conditions and Results

Conditions	Results	Test Contents	Results
U/D Ratio	1	Differential Pressure(mm H ₂ O)	4.07
Aerosol Type	NaCl	Filter Media Face Velocity (m/s)	1
Volume Flow Rate (CMH)	413	Particle Size (µm)	0.3
Temperture (°C)	23.6	Penetration Efficiency (%)	0.1
Relative Humidity (%)	47	Collection Efficiency (%)	99.9


Data			
Particle Size (µm)	Concentration Before Filter (#/cm ²)	Concentration After Filter (#/cm ²)	Collection Efficiency (%)
0.3	24605	37	99.8
0.3	24393	19	99.9
0.3	26435	18	99.9
0.3	20586	15	99.9
0.3	25383	28	99.9
0.3	20906	13	99.9


MEDIUM FILTER

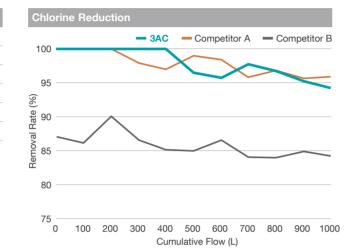
It has low pressure loss and can obtain a constant air volume over the entire area, so it is used for pre-treatment of HEPA filter or as a main filter for air conditioning system.

Functions such as antibacterial, antiviral, and antiallergic can be applied by applying functional materials.

Specfications	
Fabric	Non-wooven
Frame	Paper
Adhesive	Hot melt
Extra Features	Antibacteria, Anti-virus, Antiallergy

HEPA FILTER

Developed for the purpose of removing radioactive particles in the air, it is a high-performance dust collection filter that removes ultra-fine dust. The removal performance is different for each applied fabric and ranges from E10 (removal of 85%) to H14 (removal of 99.995%).


(Based on particle 0.3µm)

99.9% **HEPA Filter Collection Efficiency**

WATER PURIFICATION

It is a filter for water purification developed and manufactured with our technology. It is harmless to the human body by using materials whose safety has been proven. The 3AC water filter purifies chlorine, heavy metals, odors, etc., and it can remove particles such as organic/inorganic substances contained in water.

~ 1,000 gallons (3,785 liters)
6 months	
5um	
Temperature	33 - 100 °F (4.4 - 37.8 °C)
Pressure	20 - 125 PSI
Flow Rate	0.5 GPM (1.9 LPM)
	6 months 5um Temperature Pressure

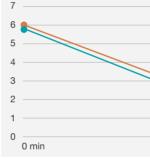
INDUSTRIAL & HVAC FILTERS

It is a deodorizing filter for air conditioning using adsorbents such as impregnated activated carbon. Various types of adsorbents can be applied, and it is possible to remove certain gases.

Filter for Semiconductor Clean Room

This is a chemical filter applied to clean rooms for semiconductors and displays. It helps to maintain a clean environment and improve productivity by effectively removing natural gases that cause defects.

Industrial Process Filters


ACTIVATED CARBON

It is widely used in air purifier, air conditioner, and refrigerators as an adsorbent that removes harmful gases and odors. (Patent No. 10-1648551)

Item	Impregnate	Impregnated Activated Carbon			
Туре	Coal, Coco	Coal, Coconut			
For Air Purifier	Measureme	Measurement (size)			
(Various)	20/40	30/60	2 Ø	3 Ø	
BET (m²/g)	Above 650	Above 650	Above 650	Above 650	
PH	5 ~ 9	5 ~ 9	5 ~ 9	5 ~ 9	
Hardness	Below 97	Below 97	Below 97	Below 97	
Moisture	Below 3%	Below 3%	Below 3%	Below 3%	

Item Impregnated Activated Carbon				
Туре	Coal, Coconut			
For Air Purifier	Measureme	ent (size)		
(Various)	20/40	30/60	2 Ø	3 Ø
BET (m²/g)	Above 750	Above 750	Above 750	Above 750
PH	4 ~ 7	4 ~ 7	4 ~ 7	4 ~ 7
Hardness	Above 97	Above 97	Above 97	Above 97
Moisture	Below 3%	Below 3%	Below 3%	Below 3%

Vanne <u>0 min 60 min 120 min 100 100 min 110 min 100 min 110 min 100 min 110 min 100 min 110 min 100 mi</u>	Sample Name	Gas		pec (TonASDDS		Deodorizing
AC Trimethyl Amine 6.2 0.8 0.3 95.2			0 min	60 min	120 min	Efficiency (%
Trimethyl Amine 6.2 0.8 0.3 95.2	AC	Methyl Mercaptane	6.4	1.2	0	100
est Method 1m ² CHAMBER, LED 3 pkg Aeasurement Detector Tube		Trimethyl Amine	6.2	0.8	0.3	95.2
Aeasurement Detector Tube	ilter Size	110 x 50 mm				
Methyl Mercaptane Trimethyl Am	est Method	1m ³ CHAMBER, LED 3	pkg			
Methyl Mercaptane Trimethyl Am	Measurement	Detector Tube				
Methyl Mercaptane Trimethyl Am	7					
a o min 60 min 12				Methyl Me	ercaptane	Trimethyl Amine
a 0 min 60 min 12	5					
2 0 min 60 min 12	4					
0 min 60 min 12	3					
	2					
0 min 60 min 12	1					
	0					
			60 min			120 m
	Correst.					
			ATTEN I			100000
ALE AND A DECEMBER OF			THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER			
All and the second se		「「「「「「」」」」」				
		「「「「「「」」」」」				
		「「「「「「」」」」」				
		「「「「「「」」」」」				

PHOTO CATALYST

When light is reacted to titanium dioxide (TIO2) fine particles, it generates active oxygen by ultraviolet rays.

The redox reaction of active oxygen causes decomposition of organic matter, sterilization, and antifouling effect.

* Titanium dioxide (TIO2) is chemically stable and has high safety to the human body.

ICE PACK

-5°C Ice Pack

Main Components

- Food additive
- Water

Specifications

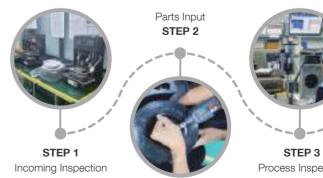
- Composition comprised by food additive
- Direct drain under running water
- Higher cold preservation compared to regular ice packs
- Low and long phase change temperature (Low latent heat. -10 ~ -5 °C)
- Low volume increase during freezing that takes less space in the storage container

-11°C Ice Pack

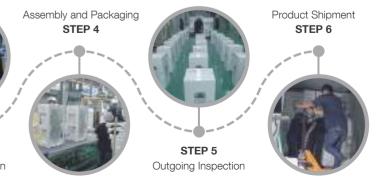
Main Components

- PCM of AMIDE compound

Specifications


- It is nitrogenous manure substance that needs to be diluted 1/25 times in water and sprayed directly on the leaves
- Direct drain under running water
- Higher cold preservation compared to regular ice packs
- Low and long phase change temperature (Excellent cold preservation. -11 °C)

EMS (Electronic Manufacturing Services) **ODM** (Original Development Manufacturing)


3AC is a manufacturer specializing in filters, core parts of air purifiers, and has price competitiveness in manufacturing finished products. Annual production capacity (450,000 units per year & EMS/ODM site : 17,000 M², factory site : 5,460 M²)

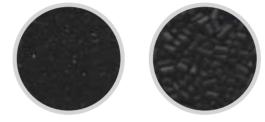
EMS Production Process

Process Inspection

3AC Products Line up

Dust Collection Filter

Pre-Filter for Air Purifier (Pleat)


Medium Filter for Air Purifier

Pre-filter for Air Conditioner

HEPA Filter for Air Purifier

Catalyst

Water Filter

Powdered Activated Carbon

Deodorizing Filter

Pre-Filter for Air Conditioner

(System)

Deodorizing Filter for Air Purifier (Honey Comb)

Deodorizing Filter for Air Purifier (Cylindrical)

Deodorizing Filter for Air Purifier (Multi-Pleat)

Pre-filter for Washing /

Drying Machine

14

Deodorizing Filter for Air Purifier (Polyurethane)

Deodorizing Filter for Refrigerator (Sheet)

Ice Pack



Deodorizing Filter for Air Conditioner (Corrugated)

Deodorizing Filter for Drying Machine (Photocatalyst)

Carbon Block Filter

Assembled Activated Carbon

Crushed Activated Carbon

Alumina Photocatalyst